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Problem :
o Analytic control sytem : ¢(t) = X(q(£)) + u() Y (q(8))
o State g =(x,y,2) €R3, ue[-1,1],
@ Reach a terminal manifold N of codimension 1 in minimum time
Aim :
o Classification of generic (local) synthesis. Related to the singularities of
the solutions of Hamilton-Jacobi-Bellman equation
o Approximate subanalytic singularity sets by semi-algebraic sets (normal

forms)
o Compute optimal control in closed loop : Motivated by chemical networks
optimization
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Context : Chemical Network



Chemical Networks with mass action kinetics

Graph Model :
Species {X1,..., Xm}-

Notations : Z is the set of reactions of the form : y —y’
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a;, Bi are the stoichiometric coefficients.



Chemical Networks with mass action kinetics

Graph Model :
Species {X1,..., Xm}-

Notations : Z is the set of reactions of the form : y —y’
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a;, Bi are the stoichiometric coefficients.

Feinberg-Horn-Jackson graph

o Vertices :y=(ay,...,am)", ¥V = (B1,..., fm)"
o Orientation : y —y'

ex: T+M_,A__ B

NS



Rate dynamics y — y’ (Mass kinetics)
K(y—y)=k()c

o k(T) = Aexp(-+) : Arrhenius law
E, A parameters, T temperature and R is the gas constant



Rate dynamics y — y’ (Mass kinetics)

Ky—y) =k

o k(T) = Aexp(-+) : Arrhenius law
E, A parameters, T temperature and R is the gas constant

o c=(cy,...,cp)T
c; : concentrations of the species X; with

& =c;M...com

= K(y — ') depends only on y.



Dynamics for the network

=Fc), D= Y Ky—-y)y-vy
VoVER

The dynamics is defined by the graph.



Dynamics for the network

=Fc),N= )Y Ky—-y)y-v
V-V ER

The dynamics is defined by the graph.
o Stoichiometric subspace

S=span{y-y,y—y €%}
o Positive class (strict if > 0)
(c(0)+8) NRZ,

Lemma
The class ( +8) NRZ, is invariant for the dynamics.




Notations

o Labeling the vertices : y1,)2,...,¥n
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o Complex matrix : Y = (J/1,..., J/») (n: number of vertices).



Notations

o Labeling the vertices : y1,)2,...,¥n
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ex: Ry, Ry
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o Complex matrix : Y = (J/1,..., J/») (n: number of vertices).
o Incidence connectivity matrix : A = (a;;);;
with for instance ay; = k; indicating a reaction with constant k; from the
first node of the graph to the second : j; ]—> V2
1



Notations

o Labeling the vertices : y1,)2,...,¥n

/CQ

ex: Ry, Ry

re—
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o Complex matrix : Y = (J/1,..., J/») (n: number of vertices).
o Incidence connectivity matrix : A = (a;;);;
with for instance ay; = k; indicating a reaction with constant k; from the
first node of the graph to the second : j; ]—> V2
1

o Laplacian matrix :

n
A=A-diag() air,......, ) ain
i=1 i=1



One has

- feo,m=YAcY

where ¢¥ = (¢, ..., ¢¥)T.



Zero deficiency theorem

Definition (Deficiency)
Feinberg and Horn-Jackson : articles in Archive Rational Mechanics
Graph concept : deficiency : 0 = n— I — S where

o n :number of vertices

o [ : number of connected components

o s :dimension of the stoichiometric subspace

Definition
The network is weakly reversible if V vertices (i, j) such that 3 oriented
path joining i to j, there exists an oriented path joining j to i.




Assumption 0=0 (Zero deficiency assumption)
Theorem (Feinberg-Horn-Jackson (1970s))

@ If the network is not weakly reversible then for arbitrary kinetics, the
differential equation cannot have a positive equilibrium nor a positive
periodic trajectory.

@ If the network is weakly reversible, there exists within each strictly
positive compatibility class precisely one equilibrium c*, this equilibrium
is locally asymptotically stable with (pseudo-Helmholtz) Lyapunov
function V (c,c*) = ¥; [¢i(n(c;) =In(c}) = 1) +¢;].

Moreover there are no non trivial periodic orbits.




Assumption 0=0 (Zero deficiency assumption)
Theorem (Feinberg-Horn-Jackson (1970s))

@ If the network is not weakly reversible then for arbitrary kinetics, the
differential equation cannot have a positive equilibrium nor a positive
periodic trajectory.

@ If the network is weakly reversible, there exists within each strictly
positive compatibility class precisely one equilibrium c*, this equilibrium
is locally asymptotically stable with (pseudo-Helmholtz) Lyapunov
function V (c,c*) = ¥; [¢i(n(c;) =In(c}) = 1) +¢;].

Moreover there are no non trivial periodic orbits.

Application : Test bed cases :

casel: g M, gk ¢ 6 =3—-1-2=0: not weakly reversible
case2: ( network)
ki ko
T+M&_—/>A*>B 8 =3-1-2=0:one single equilibirum
ks globally asymptotically stable 10

ks



Equilibrium for the network
TrL? — 4detL <0 TrL? - 4detL >0
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FIGURE — Phase portrait for the

model. (left) Focus; (right) Node.



Geometric Optimal Control



Optimal Control Problem

d =f(,T) ar _ € ]
T ;T d[—u, UE [u_,u,

u(-) tracked the derivative of the temperature (related to the
Goh Transformation).

Single input C*-control system, affine in u :

{ q=F@+uG(, lul<1,
q=(,T)eR"



Formulation :

max ¢ (ff)

tr: (fixed) time batch duration



Formulation :

Formulated as

max ¢ (tf) ty: (fixed) time batch duration

{

min ¢ (free), lul<1
c1(tr) = d is a desired quantity



Formulation :
max ¢ (tf) ty: (fixed) time batch duration

Formulated as
{ min 7y (free), lul<1

c1(tr) = d is a desired quantity

: terminal manifold of codimension 1.

C1 .
|I’l

d ={c =d}

c1(0) < d

(T! CZ»---rCm)



Necessary optimality conditions Pontryagin Maximum
Principle (1956)
Notations :

q=F(@+uG(q), lul=l,
min fr, q(tf) €

© H(q,p,u) =p-(F(q)+uG(q)), peR"\{0} : adjoint vector

o H: pseudo-Hamiltonian and the maximized Hamiltonian is

M(q, p) = max H(q,p,u), q, p are fixed

u|



Theorem (Pontryagin et al. 1956)

Assume (q* (), u*(-)) is a time minimal solution on [0, t;] then there exists
p* () such that a.e. on [0, t;] :

g =@ @,p ®O,u @), pO=—7-(@ @,p ®Ou@®) 1)
op 0q
the maximization condition is satisfied

H(g" (), p" (0, u" () = . ()

v




Theorem (Pontryagin et al. 1956)

Assume (q* (), u*(-)) is a time minimal solution on [0, tf*i] then there exists
p* () such that a.e. on [0, t;] :

0H OH
Gg*()= G—(q*(t),p*(t), u* (1), p*C)=—-—=—(qg" @), p O, u* (1) 1)
p dq

the maximization condition is satisfied

H(g" (), p" (0, u" () = . ()

Moreover
0 — is constant and = 0,
o At the final time one has the fransversality condition :

p*(tg) L Ty ipN )



Extremals : solutions of (1)—(2).
BC-extremal : Extremals & transversality condition (3) satisfied.

Maximization condition
o regular : p(1)-G(q(t)) #0

u(t) =sign (p(f) - G(q(t)) a.e.

Finite number of switches : Bang-Bang

o singular :
p(H)-G(q) =0 V¢



Computations of singular extremals and properties

Notation : X, Y : two vector fields on R”
Lie bracket :

(X, Y1( )_6_X( )Y ( )—a—Y( ) X(q)

z=(q, p) and Hamiltonian lift of X : Hx(z) = p- X(q)
Poisson bracket :
{Hx,Hy}(2) =p-[X,Y](q)



Computations of singular extremals and properties

Notation : X, Y : two vector fields on R”
Lie bracket :

(X, Y1( )—6—X( )Y ( )—a—Y( ) X(q)

z = (q, p) and Hamiltonian lift of X : Hx(2) = p- X(q)
Poisson bracket :

{Hx, Hy}(2) = p-[X, Y1(q)
Computations Hg(z) = p-G(g) =0
Differentiating twice w.r.t. time gives the two equations

d
aHG(Z) =dHg-z2={Hg, Hr + uHg} = {(Hg,Hg} =0
{{Hg, Hr}, Hr} (z) + u{{Hg, Hg},Hg}(z) = 0

Then if {{Hg, Hr}, Hg}(2z) # 0 then we compute i and plug it in H to obtain the

true Hamiltonian.
18



Generalized Legendre-Clebsch condition

{{Hg, Hr}, Hg}(2) 2 0
= necessary optimality condition (High Order Maximum Principle, Krener).
Strict generalized Legendre-Clebsch condition

{{Hg, Hr}, Hg}(2) > 0



Generalized Legendre-Clebsch condition
{{HGy HF}) HG}(Z) =0

= necessary optimality condition (High Order Maximum Principle, Krener).

Strict generalized Legendre-Clebsch condition
{{Hg, Hp}, Hg}(2) > 0

Classification of singular extremals
= Hp : constant value

o M =0 : Exceptional case
o M>0:{{Hg, Hr}, Hz}(z) > 0 : Hyperbolic case (fast)
o M>0:{{Hg, Hr}, Hg}(z) <0 : Elliptic case (slow)



Classification of regular extremals (Ekeland - IHES, Kupka - TAMS)
Denote :

@ 04 :bang arc with u=+1
@ o_ :bang arc with u=-1
0@ o :singulararc u=us€e]-1,1]

0107 is the arc o, followed by o75.

20



Classification of regular extremals (Ekeland - IHES, Kupka - TAMS)
Denote :

@ 04 :bang arc with u=+1
@ o_ :bang arc with u=-1
0@ o :singulararc u=us€e]-1,1]

0107 is the arc o, followed by o75.

Switching surface :
° 2:{(g,p) | p-Glq) =0}
o X:{(g,p) | p-G(@=p-IGFl(g=0cX
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Classification of regular extremals (Ekeland - IHES, Kupka - TAMS)
Denote :

@ 04 :bang arc with u=+1
@ o_ :bang arc with u=-1
0@ o :singulararc u=us€e]-1,1]

0107 is the arc o, followed by o75.

Switching surface :

° Z:{(g,p) | p-G(gq)=0}

o 2 :{(g,p) | p-G(q@)=p-IG,Fl(q)=0tcX
(1) = p(1) - G(q(t)) is the switching function.

d(1) = p(1)-[G, Fl(q(1)
(1) = p(0) - (L[G, F1, Fl(q(1)) + u(?) [[G, F1, Gl (q(1))

20



Ordinary Switching time : £ €]0, ¢¢[ such that ®(¢) = 0 and ®(z) # 0
Lemma

Near z(t) every extremal solution projects onto oo if d()<0ando_o, if
O >0

21



Ordinary Switching time : 7 €]0, ¢[ such that ®(¢) = 0 and D #0
Lemma

Near z(t) every extremal solution projects onto oo if d()<0ando_o, if
O >0

Fold case : If ®(¢) = ®(t) =0 then z(t) € ¥’
D (2(1) = p(D) - ([[G, F1,Fl(q(t) +€[IG, F],G](q(t))), e=+1

21



Ordinary Switching time : 7 €]0, ¢[ such that ®(¢) = 0 and D #0

Lemma

Near z(t) every extremal solution projects onto oo if d()<0ando_o, if
O >0

Fold case : If ®(¢) = ®(f) =0 then z(t) € 2

®,(2(0) = p(1) - (IIG, F1, Fl(q(1)) + £ [[G, F],Gl(q(1))), &==1
Assumption : ' : surface of codimension two, @, (z(#)) #0 for € = +1.
z(t) : fold point

o paraboliccase: @, (HD_()>0
o hyperboliccase: &, ()>0and ®_(1) <0
o ellipticcase: &, (f)<0and d_(1)>0

21



mz Z+&\"%/z //mz
[N

Fold case

In the parabolic case |uy| > 1 and the singular arc is not admissible.

Theorem (Kupka, 1987 (TAMS))
In the neighborhood of z(t) every extremals projects onto :
o Parabolic case :0,.0_04 0ro_o4+0_

o Hyperbolic case : 0050+

o Elliptic case : every extremal is of the formo,o_0o,0_ ... (Bang-Bang)

but the number of switches is not uniformly bounded.

22



p-G(q)>0

singular s

p -G(g) <0

FIGURE — Fold case in the hyperbolic case and the turnpike phenomenon

23



Application to Chemical Networks

24



Time minimal synthesis for chemical systems

min ¢ lul <1
q=F(q)+uG(q)
ci(tp)eN={c; =d}
Methods : Two steps :
@ Calculation of the time minimal syntheses near the terminal manifold

25



Time minimal synthesis for chemical systems

min ¢ lul <1
{ 4=F(@+uG(q)
ci(tp)eN={c; =d}
Methods : Two steps :
@ Calculation of the time minimal syntheses near the terminal manifold
@ Bounds on the number of switches

“

N
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Time minimal synthesis for chemical systems

min ¢ lul <1
{ 4=F(@+uG(q)
ci(tp)eN={c; =d}
Methods : Two steps :
@ Calculation of the time minimal syntheses near the terminal manifold
@ Bounds on the number of switches

4
N

Step 1: Take qp € N, z9 = (qo, n(qo)) where n(qyp) is the normal vector of
qo-

Find, in a small neighborhood U of ¢y, the time minimal closed loop control
u* (g) to reach N starting from q in minimal time.

at

25



Computations : q = F(q) + uG(q), q(tf) €
Synthesis : it means

o determine the switching locus
Ex. :
N
(0

W : switching locus

26



Computations : q = F(q) + uG(q), q(tf) €
Synthesis : it means

o determine the switching locus
Ex. :
N
(0

g W : switching locus

o determine the splitting locus or the cut locus C where two distinct

optimal trajectories occur.
ZZ; :
C :cut locus

Ex. :

26



Tools : Singularity theory N = {f~1(0)}
o expand at gy with Taylor series : jet spaces.

o compute : Normal form to estimate W, C near ¢o. Tools are simple but the
classification is complicated.

27



Tools : Singularity theory N = {f~1(0)}
o expand at gy with Taylor series : jet spaces.

o compute : Normal form to estimate W, C near ¢o. Tools are simple but the

classification is complicated.

Ex. : Two reactions only. (¢, T) €R3, q=F+uGand N = f~1(0).

Generic case zg = (qo, n(qo)).

G is tangent to N : Then p-G =0 so p is normal to

Using classification of extremals at a point such that p- G(q) =0,
p-[G,Fl(q) #0:

n n
W‘N %@r‘w
(o or o—

depending on the sign of p-[G, Fl(qo).
... but there are more complicated situations

27



Define :
S the singular locus : {qe N; n-[G, Fl(q) = 0}
& the exceptional locus : {q e N; n- F(q) = 0}
Stratification of the terminal manifold :

v & U

FIGURE — Dotted line : elliptic, red line : hyperbolic.
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Define :
S the singular locus : {q € N; n-[G, F](q) = 0}
& the exceptional locus : {q e N; n- F(q) = 0}
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Define :
S the singular locus : {q € N; n-[G, F](q) = 0}
& the exceptional locus : {q e N; n- F(q) = 0}

For S : from the classification near a fold point one has :

o Hyperbolic case
o Elliptic case
o Parabolic case

29



Define :
S the singular locus : {qe N; n-[G, Fl(q) = 0}
& the exceptional locus : {q e N; n- F(q) = 0}
For & : from the classification near a fold point one has :
o Hyperbolic case
o Elliptic case
o Parabolic case
To make the analysis we construct a semi-normal form : q = (x, ¥, z) near 0

y=dx)y+e()+...

{ X = 1+a(x)zz+2b(x)yz+c(x)y2+...
Z=Ww—-0x)+ fx)y+g0)z+...

with
o Nis identifiedto x =0
the singular arc is identified to o : t — (¢,0,0) with singular control .
a(0) <0 : hyperbolic if |@1| < 1.
a(0) >0 : elliptic if |@1| < 1.

Qo
Qo
Qo
o parabolic if |ZI] > 1. 29



Synthesis : There exists a C’-foliation by planes such that in each plane the
synthesis is :

Case : Hyperbolic.

N n y =constant

Note that the synthesis is 0.0 30+ hence the temperature is not
constant.

30



Synthesis : There exists a C’-foliation by planes such that in each plane the
synthesis is :

Case : Hyperbolic.

N n y =constant

Note that the synthesis is 0.0 30+ hence the temperature is not
constant.

Case : Parabolic. For instance, a synthesis is
Switching locus ¢ _

T+ N Ny =constant

30



Other synthesis example
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Two examples of reactions
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The irreversible case

Application (non trivial) :

c; : concentration of A,
¢y : concentration of B,
Final target : ¢c; =d
Parameter a = E»/ E;.

Ak gk c

33



ea < 1: Singular arcs are
not admissible : optimal po-
licy :u==l.

Theorem (Bonnard, Pelletier)

S
Ug,o < U
u=uy
u=u_
Ssa E
U-< Us—o
\ ——
’ v
Usat A

ea > 1 : Different cases : singular
arcs are admissible and the optimal
policy iso_o 0.

Every optimal trajectory has at most two switchings and of the formo .o _0o
where each arc of the sequence can be empty.

34



The network

k k
T+M . B ™. C
T
W
key
Stratification of the terminal manifold :
v

& Ug

equilibrium

D-D">0

y

FIGURE — Dotted line : elliptic, red line : hyperbolic, S : Singular locus.
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W T (hyperbolic)
W T. (elliptic)
BT (ul>1)

— 0s

FIGURE — Singular surface foliated by singular trajectories.
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005  0.00 -0.05 . _r
\ \ 1 0.02
\w o ow,
0.00 2
| W . (hyperbolic)
o — 002
- 0,00 — T,
+7-0.05

FIGURE — Local synthesis obtained via symbolic computations.
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0.05 0.00 -0.05

——-r

o v

W T. (hyperbolic)
— T,

m w,

-0.15

FIGURE — Local synthesis obtained via symbolic computations. .
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Conclusion

General techniques to handle complicated networks.

Even a simple network A — B — C can give complex optimal solution : work in
progress on the network.

Geometric approach : Find coordinates to analyze the syntheses
— applicable to general networks

On-going work :

o Normal forms to investigate local synthesis near the singularity of the
singular set.

o Relate to the solutions of Hamilton-Jacobi-Bellman (local to global)
o Analyze the conjugate locus

41
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