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Thematics and Contracts

Context : Electrical muscle stimulation : force-fatigue model

Aim : Optimize a pulses train w.r.t. some cost

Sampled-data control problem, Theoritical works :

Pontryagin-type optimality PGMO contract (09.2019-)
conditions (open-loop control) PEPS AMIES (12.2018-)

Sensitivity, Estimation, Model-Free Control, I(’gclllL:’ng/ aspacts
MPC,iPID (closed-loop control) contract )
UBFC & Segula Technologies

Electro-stimulation device (2020—2023)
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Muscular stimulation

FES-Stimulator
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Applications : Muscle strengthening, Mobi-
lity of paralyzed patients, Rehabilitation.
The protocols used in the applications are
limited by

o fatigue analysis

o imprecision on the movements
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Muscular stimulation
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o imprecision on the movements

Industrial aim : Adjust automatically the stimulation parameters using control
strategies based on muscle model to obtain better performance.

Mean : Change the intensity and/or frequency of the stimulations to control the
force.
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Ding et al. model

FES input i. Dirac impulses O attimes r= 0,11,0,...,[N.

N

i(=) Rinid(t—1), n;€l0,1]
i=0

where
1, fori=0,
= Li—1ti1 .
1+(R-Dexp|——], fori=1,...,N,
Tc

Ri:

takes into account the tetanic contraction.

1. J. Ding, A.S. Wexler and S.A. Binder-Macleod, Development of a mathematical model that
predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000)
917-925
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Ding et al. model

FES input i. Dirac impulses O attimes r= 0,11,0,...,[N.

N

i(=) Rinid(t—1), n;€l0,1]
i=0

where
1, fori=0,
= Li—1ti1 .
1+(R-Dexp|——], fori=1,...,N,
Tc

Ri:

takes into account the tetanic contraction.

FES signal E;.

1Y [—t;
Es(l‘)=—ZRimH(t—t,') exp|—
Tej=0 Tc

1.4, Ding, A.S. Wexler and S.A. Binder-Macleod, Development of a mathematical model that
predicts optimal muscle activation patterns by using brief trains, J. Appl. Physiol., 88 (2000)
917-925
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The FES signal drives the evolution of the dynamics :

0=-" ko,
Tc
(1) =—=1(2) y(2) + A(r) B(2),
A(t)z_w_FaA (1),
Tfat
. an - r
Km(t):—(t)—Km,eSt ag,, (1),
Tfat
_l._l(t):_Tl(t)_Tl,rest+aT1 o),
Tfat
where the Hill functions are given by
— ©) —
PO = s o A YO T b

Constants of the model depend on the muscle
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Summary of the model

Pulses

Linear
Filter

Static E

Cn (1) Nonlinearity | g(r) lter F(r)
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Linear
Filter

6/31



Sampled-data control problem formulation

The dynamics can be written

piecewise constant

e N

N 4
() = filx(0) + folD) Z Rin;et H(t—1t;)

i=1

where fi, f> are vector fields and x = (Cy, I, A, K,;,, 71) is the state.
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Sampled-data control problem formulation

The dynamics can be written

piecewise constant

e N

N 4
() = filx(0) + folD) Z Rin;et H(t—1t;)

i=1

where fi, f> are vector fields and x = (Cy, I, A, K,;,, 71) is the state.

This falls into the sampled-data control problem where the controls are the
amplitudes 1;,i=0,...,N and the sampling times #;,i=1,...,N.

We may consider physical constraints :

Vi=0,...,N, T)iE[O,l] and Liv1— 1 =A.
——

Interpulse
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Sampled-data control

x(1) = f(x(8), u()

Non permanent control : we can change the value of the control only a finite

number of times.
— The state x is (absolutely) continuous while the control u is piecewise

constant.

u

fo n b T 't

O=fy<h<..<iy<Tn41 =T are the N sampling times.
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Sampled-data control

x(1) = f(x(8), u()

Non permanent control : we can change the value of the control only a finite

number of times.
— The state x is (absolutely) continuous while the control u is piecewise

constant.

u

fo n b T 't

O=fy<h<..<iy<Tn41 =T are the N sampling times.

N is fixed, ¢;’s are free
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Sampled-data optimal control

Mayer formulation

min @ (x(T))

s.t.

(0 = A(0) + fo(0) £ Ry e%e H(t— 1),
X(O) = X0,

(M0 N1re s TN L1y evny Iy) ERENTL

T][E[O,l], Vl:(),

h=0<h<h<..<Iin<T=1tn+1,

Liv1—1 = A, Vi=0,...
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Necessary optimality conditions

Recap : Permanent control case (Pontryagin,1962) °

miqul @x(T)),
x(0) = fx(®),u(®), x(0)=xp

% : Admissible controls = bounded measurable mappings.

2. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. : The mathematical
theory of optimal processes, John Wiley & Sons, Inc. (1962).
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Necessary optimality conditions

Recap : Permanent control case (Pontryagin,1962) °

miqul @x(T)),
x(0) = fx(®),u(®), x(0)=xp

% : Admissible controls = bounded measurable mappings.
Let x* a reference optimal trajectory associated to u*.

oo x*(T)

x*(s)

2. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. : The mathematical
theory of optimal processes, John Wiley & Sons, Inc. (1962).
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Necessary optimality conditions

Xey, Ug w(T)
. X (1)
X ,U

w(s)
x*(s)
ﬂ%fn
Ue

-— (—
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Necessary optimality conditions

eUcR™ onflss+el, (s€[0,T

1 on - —
o L -perturbation : u.(1): { 0 () on [s+¢, T[

o Corresponding variation vector w s.t. : x(t, 1) = x(t, u*) + € W(T) + o(e)

w(t)=V.fx* o, u" @) w(t),
w(s) =fx*(s),v) = fx*(s), u*(s)

Denote by ®(.,-) the state-transition matrix of V. f(x*, u*) :

w(T) =®(T, s) w(s).
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From optimality of (x*, u™),

0 < @UI)-gE (1) — <V(p(x*(T)),W(T)>

£
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From optimality of (x*, u™),

0 < @UI)-gE (1) — <V(p(x*(T)),W(T)>

£

Introducing the co-state vector p(f) s.t. :

p(t) ==V f(x™ (), u”™ ()" p(o),
p(T) ==Ve(x™(T).
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From optimality of (x*, u™),

0 < @UI)-gE (1) — <V<p(x*(T)),W(T)>

£

Introducing the co-state vector p(#) s.t. :

p(t) ==V f(x™ (), u”™ ()" p(o),
p(T) ==Ve(x™(T).

Using w(T) = ®(T,s) w(s) and p(s) = (T, s)" p(T) we finally get :

YueU, (p(s),fix"(9)v) - f(x"(9),u" () <0

which is the so-called maximization condition of the Pontryagin
maximum principle.
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Necessary optimality conditions

Non Permanent control case (Bourdin, Trélat, 2016) >.
. ),
min p(x(T))
x(6) = f(x(0),u(®), x(0)=xo

% : Admissible controls = piecewise constant mappings.
Let x* a reference optimal trajectory associated to u*.

2. Bourdin L., Trélat E., Optimal sampled-data control, and generalizations on time scales,
Math. Cont. Related Fields 6, 53-94 (2016)

12/31



Necessary optimality conditions

Non Permanent control case (Bourdin, Trélat, 2016) >.
. ),
min p((x(1))
x(0) = f(x(0), u(®), x(0)=xp

% : Admissible controls = piecewise constant mappings.
Let x* a reference optimal trajectory associated to u*.

"y

Io h 15} T t

2. Bourdin L., Trélat E., Optimal sampled-data control, and generalizations on time scales,
Math. Cont. Related Fields 6, 53-94 (2016)
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Necessary optimality conditions

Non Permanent control case (Bourdin, Trélat, 2016) >.
min ¢(x(7)),
ueuU

x(0) = fx(@), u(®), x(0)=xo

% : Admissible controls = piecewise constant mappings.
Let x* a reference optimal trajectory associated to u*.

o L°°-perturbation : u, := u* +&(& — u*) (¢ is valued in U has the same
sampling times as u*).

o This time, the corresponding variation vector W satisfies :

w=Vyf(x*,u") w+V,fx*,u*) &-u"),
w(0)=0

hence,

T
w(T) =f0 O(T,s) Vy f(x*(s), u”(s) &(s)—u"(s)ds.

2. Bourdin L., Trélat E., Optimal sampled-data control, and generalizations on time scales,
Math. Cont. Related Fields 6, 53-94 (2016)
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T
w(T) =f0 O(T,s) Vi f(x*(s), " (s) (E(s)—u"(s))ds.

Using it, together with 0 <(V (x* (T)), w(T)), yield

T
fo (p(8), Vuf(x™(s),u" () (€(s)—u"(s)) ds=<0.
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T
w(T) =f0 O(T,s) Vi f(x*(s),u”(s) (€(s)—u"(s))ds.

Using it, together with 0 <(V (x* (T)), w(T)), yield

T
fo (p(8), Vuf(x™(s),u" () (€(s)—u"(s)) ds=<0.

Finally, taking { = v € U over [}, ¢/ [ and &(¢) := u™ (t) elsewhere, we get

i’7i+1
< >SO,

foralveUandall i =0,..., N, where u; corresponds to the value of u* over
the interval [1;, £ 11.

s
f VL H(8), p(s), ul) ds, - u}

t

1
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Remarks

o Same weaker maximization condition than the discrete Pontryagin
maximum principle (Boltyanskii, 1978) 3

o Generalization to time scale (Bourdin, Trélat, 2013)

o Another proof with different approach by Dmitruk and Kaganovich (2011) 4

3. V.G. Boltyanskii, Optimal control of discrete systems, John Wiley & Sons, New York-Toronto,
Ont., 1978.
4. A.V. Dmitruk, A.M. Kaganovich. Maximum principle for optimal control problems with

intermediate constraints, Comput. Math. Model., 22(2) :180-215, 2011.
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Application to the force-fatigue model

Theorem

gm0 £y »--, [yy) is optimal, then there exists p satisfying the
co-state equation and the transversality condition.
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Application to the force-fatigue model

Theorem

gm0 £y »--, [yy) is optimal, then there exists p satisfying the
co-state equation and the transversality condition.
Moreover, the necessary conditions are :

(i) the inequality
T
(/ p1(s)b(s) ds)ﬁi =0,
rr

foralli=0,...,n and all admissible perturbation 7}; of 17;.‘ ;
(ii) and the inequality

N

T
i+ b(—t;‘)n}‘f p1(s)b(s) ds
[

T
+b(—t;*)(R—1)n’;+1f p1(8)b(s) ds)f,- <o,
L

foralli=1,...,n and all admissible perturbation t; of [
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Numerical methods

Three numerical schemes :

@ Open-loop control.
Direct methods : not based on necessary optimality conditions.
Indirect methods :
o Shooting algorithm to solve the boundary value problem coming from the
necessary conditions
o Newton-like algorithm to find a zero of the shooting function
o Direct method to give an initialization
o Adapted integration scheme (stiff dynamics).

@ Closed-loop control. Adaptive control algorithms where the fatigue is
estimated by a non-linear observer.
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Numerical methods

Three numerical schemes :

@ Open-loop control.

Direct methods : not based on necessary optimality conditions.
Indirect methods :

o Shooting algorithm to solve the boundary value problem coming from the
necessary conditions

o Newton-like algorithm to find a zero of the shooting function

o Direct method to give an initialization

o Adapted integration scheme (stiff dynamics).

@ Closed-loop control. Adaptive control algorithms where the fatigue is
estimated by a non-linear observer.

= Complementaries of the methods &
open-loop : compute a pulses train to reach the maximal force (T ~ 1s),

closed-loop : stabilization near a reference force with rest and
stimulation periods (T > 10s)
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Direct method
Idea.

Sampled-data optimal Finite-dimensional
control problem optimization problem
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Direct method

ldea.

Sampled-data optimal Finite-dimensional
control problem optimization problem

Method. Transform the optimal control problem in a nonlinear
finite-dimensional optimization problem (NLP) via discretization in time of the
state.

ti,i=1,...,N are the optimization variables of the NLP.

Algorithms
o primal-dual interior point algorithm
o derivatives are computed by automatic differentiation.

= robust w.r.t. initialization, handle constraints on the state/control, in
general less precise than indirect methods.
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Direct method : max F(7T), N=10, 10ms<t;,,—t;,i=0,...,N.
li

18/31



Indirect method.

Exploit the geometric structure of the solutions via the necessary conditions.

Preliminary results : relax the inequalities in the optimality conditions to obtain
a boundary value problem.

= Fast convergence and high accuracy/precision.
Multiple shooting method : (1 + + V) unknowns :

17(0))
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Multiple shooting method : (n + + V) unknowns :

p(o)) y O—:(t],...,tg\e').

p
p p(0)
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Multiple shooting method : (12 + + V) unknowns :
p(0), y 0=(1f,...,IN).

Shooting function. Find a zero of the function S(po, ~1,..., 7, 0) so that
o the initial condition x(0) = xp,
o the continuity conditions Z” = Z", i=1,...,N,
o the necessary conditions NC; <0i=1,...,N,
are satisfied.
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Multiple shooting method : (2 + + V) unknowns :

p(0), )

Shooting function. Find a zero of the function S(po, ~1,..., 7, 0) so that
o the initial condition x(0) = xp,
o the continuity conditions Z” = Z", i=1,...,N,
o the necessary conditions NC; <0i=1,...,N,
are satisfied.

Shooting algorithm. Sensitive to initialization.
Initialization : compute a solution (X, &) with a direct method, by
continuation or by approximation.

Starting from (X(T), p(T)) (where p(T) = —V@(x(T)) is known), integrate
backward the co-state dynamics to obtain p(0).

Tools : Julia’s libraries :
- Extended precision for float (ArbNumerics. j1)
- Stiff numerical integrator (DifferentialEquations. jl)
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@ Optimal solution (Fig. 2)
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FIGURE — Quality of the optimal solution computed with multiple shooting with respect

to its perturbations. The quality is measured from the necessary conditions and the

value of the cost.
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Closed-loop algorithm

o Sensitivity analysis : select the relevant fatigue variable for estimation

o Detectability : construct an observer to estimate the chosen fatigue
variable

o Adaptive control algorithm (MPC) based on the observer
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Sensitivity analysis

Let Z(-, Q) = (x(-), p(-)) a reference extremal associated to u and starting at
QeTM.

H(x,p,u) = p- f(x,u) : Hamiltonian of the system : X = f(x, u),

ﬁ(z, u) : Hamiltonian vector field evaluated along the extremal z(-).

X3

z=x,peTM
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Sensitivity analysis

Definition (Jacobi fields)
The Jacobi equation is

§200 = 2 F (200, u() 6208
0z

The Jacobi fields associated to x;-variation i = 1,...,n are the solutions

Ji(),i=1,...,nwith J;(0)=e;, i =1,...,n where (e;); is the R" x R"
canonical basis.

3 z=(x,p)e TM

- - —

Q --"~ T1(1) T~ o X2
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Sensitivity analysis

Definition (Jacobi fields)
The Jacobi equation is

. 0 —
0z(t) = — H(z(1), u(1)) 6 z(t)
0z

The Jacobi fields associated to x;-variation i = 1,...,n are the solutions
Ji(),i=1,...,nwith J;(0)=e;, i =1,...,n where (e;); is the R" x R"
canonical basis.

Definition (Sensitivity)

The sensitivity of the fatigue variables x;, i = 3,4,5 w.r.t. the force is defined
by

max [[Ip(J; ()], i=3,45 (n=5)

te(0,T]

where I is the projection z — x» (on the force variable).
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SA(0) = 0.1 Ayes =0.3009

max; |[6F(t)] =194

15

= 10

oF

0 50
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Sensitivity analysis. Time evolution of the Jacobi fields component § F(-).

100

(5[(()7,1(0) =0.1K,, .5 =0.0103

071(0) = 0.1 7y eqt =5.095

0

max; [0F(t)| =2.7 15 | max, [0F(t)| =1.6

1
[
w

0.5

0

50 100 0 50 100
t (ms) t (ms)

The fatigue variable A is the most relevant for the given extremal
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Observability characterization

) { X=fx)+uglx)
y=x2=F : force is measured, fatigue is estimated

High gain nonlinear observer (Gauthier et al., 1992)°

5. Gauthier J.P., Hammouri H., Othman S, A simple observer for nonlinear systems -
applications to a bioreactors, IEEE Transactions on Automatic Control, 37 (1992) 875-880
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Observability characterization

() { X=fx)+uglx)
y=x2=F : force is measured, fatigue is estimated

High gain nonlinear observer (Gauthier et al., 1992)
Theorem

(S) is uniformly observable for any input iff (S) is diffeomorphic to a system of
the form

z=f2)+ug(2)
where

2 g1(z1)

Fa=| || and go=| 8PP

k(Z) gn(zly---»zn)
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Computation.

x(1) = ™0 fi(x(0), Es(D) = f(x(8), Es(1)), meN
y(t) = h(x(1)

Change of variables.

p: Q—-R"
x— (h(x), Lrh(x), L (L) (),...)"

where Z£r(h)(x) : Lie derivative of h w.rt. f at the point x.
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Computation.

x(1) = ™0 fi(x(0), Es(D) = f(x(8), Es(1)), meN
y(t) = h(x(1)

Change of variables.

p: Q—-R"
x— (h(x), Lrh(x), L (L) (),...)"

where Z£r(h)(x) : Lie derivative of h w.rt. f at the point x.
Under the action of ¢, the dynamics becomes

0 1 0 0
= ﬁm 0 —+ :
1 0

0 0 k(u, z)
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Under the action of ¢, the dynamics becomes

0 1 0 0
:ﬁm 0 —+ :
TR | 0
0 - -+ 0 k(u, z)
A

Theorem
Under technical assumptions, the observer

2 =B AL - B Sy CT(Ca(D) - y(1)
where C = (1,0,...,0) and Sy is the solution of the Lyapunov equation :

0Sg+ATSy+SpA-CcTCc=0

is convergent exponentially on R".
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3.1
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— A (interpulse=10ms, 30% error of Km)
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(Nonlinear) Model Predictive Control algorithm

Predicted
’.\/\f\ output
(force)
_______ V. 1__ .-.h‘y:tv?y.’:v’.‘;_- Fuei
' target

Past Future

Eg(t):

Pulses

train
u(t):
Applied

pulses | | | e /K| = nlter /)= =n(trepi/k)

LY

—>—> <>
k Ak+Ipk+2 k+p -1,
23 T it T iz

1(t/K)=I(tks1/K) = = I(twp-1/k)

At time t = t;,, the fatigue is not known : use the observer A to estimate it in
the optimization on a horizon of size p.

Stabilization near a force of reference Fef : we minimize

T
f F(s)ds — Fe
0
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600 | |

— — Force response for p=3
— - — - Force response for p=5
Force response for p=10
500 - -

400

300

200

100

1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (ms)

Evolution of the force for Fef = 425N and different horizon (p = 3,5,10) .
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Amplitude
T
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Future works

o Time-scale context : theoretical works (free sampling times),

o Software development to handle first order optimality conditions in the
sampled case with variational differential inequality,

o Optimality conditions in the sampled-data case with state constraints
(related to the industrial contract),

o Number N of sampling times not fixed,

o Geometric study : direct computation of the derivative of the
exponential function (Baker-Campbell-Hausdorff), second order
necessary optimality conditions (conjugate points).

o Industrial project : couple optimization technigues with estimations of
the variables and parameters (characterizing the muscle), observability
— iPID controller , robustness with respect to noise.
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