Geometric and numerical methods in optimal control for the time minimal saturation in Magnetic Resonance Imaging

DYNAMICS, CONTROL, and GEOMETRY In honor of Bronisław Jakubczyk's 70th birthday 12.09.2018 - 15.09.2018 | Banach Center, Warsaw

> <u>J. Rouot</u>^{*}, B. Bonnard, O. Cots, T. Verron *EPF.Troyes, France, jeremy.rouot@epf.fr

• Bloch equation: M: magnetization vector of the spin-1/2 particle in a magnetic field B(t).

F. Bloch Nobel Prize (1952)

J.Rouot, B.Bonnard, O.Cots, T.Verron

Experimental model in Nuclear Magnetic Resonance

• Two magnetic fields : controlled field $B_1(t)$ and a strong static field B_0

Experimental model in Nuclear Magnetic Resonance

• Two magnetic fields : controlled field $B_1(t)$ and a strong static field B_0

$$\begin{pmatrix} \dot{M}_{x} \\ \dot{M}_{y} \\ \dot{M}_{z} \end{pmatrix} = \begin{pmatrix} -\Gamma M_{x} \\ -\Gamma M_{y} \\ -\gamma (M_{0} - M_{z}) \end{pmatrix} + \begin{pmatrix} 0 & -\omega_{0} & \omega_{y} \\ \omega_{0} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{pmatrix} \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}$$

- Γ, γ are parameters related to the observed species
- ω_0 is fixed and associated to **B**₀
- ω_x, ω_y are related to the controlled magnetic field $B_1(t)$

Experimental model in Nuclear Magnetic Resonance

• Two magnetic fields : controlled field $B_1(t)$ and a strong static field B_0

$$\begin{pmatrix} \dot{M}_{x} \\ \dot{M}_{y} \\ \dot{M}_{z} \end{pmatrix} = \begin{pmatrix} -\Gamma M_{x} \\ -\Gamma M_{y} \\ -\gamma (M_{0} - M_{z}) \end{pmatrix} + \begin{pmatrix} 0 & -\omega_{0} & \omega_{y} \\ \omega_{0} & 0 & -\omega_{x} \\ -\omega_{y} & \omega_{x} & 0 \end{pmatrix} \begin{pmatrix} M_{x} \\ M_{y} \\ M_{z} \end{pmatrix}$$

- Γ, γ are parameters related to the observed species
 ω₀ is fixed and associated to B₀
- ω_x, ω_y are related to the controlled magnetic field $B_1(t)$
- $M(t) \in S(O, |M(0)|)$, $B_1 \equiv 0 \Rightarrow$ relaxation to the stable equilibrium M = (0, 0, |M(0)|).

• Normalized Bloch equation in the rotating frame $(\omega_0, (Oz))$

$$\begin{aligned} \dot{x}(t) &= -\Gamma x(t) + u_y(t) z(t), \\ \dot{y}(t) &= -\Gamma y(t) - u_x(t) z(t), \\ \dot{z}(t) &= \gamma (1 - z(t)) - u_y(t) x(t) + u_x(t) y(t). \end{aligned}$$

q = (x, y, z) = M/M(0) is the normalized magnetization vector,
 (u_x, u_y) is the control.

• Normalized Bloch equation in the rotating frame $(\omega_0, (Oz))$

$$\begin{aligned} \dot{x}(t) &= -\Gamma x(t) + u_y(t) z(t), \\ \dot{y}(t) &= -\Gamma y(t) - u_x(t) z(t), \\ \dot{z}(t) &= \gamma (1 - z(t)) - u_y(t) x(t) + u_x(t) y(t). \end{aligned}$$

q = (x, y, z) = M/M(0) is the normalized magnetization vector,
 (u_x, u_y) is the control.

• Symmetry of revolution around (Oz), we set: $u_y = 0$ and we obtain the planar control system

$$\dot{y}(t) = -\Gamma y(t) - u(t) z(t),$$

$$\dot{z}(t) = \gamma (1 - z(t)) + u(t) y(t),$$

and $u = u_x$ is the control satisfying $|u| \le 1$.

Saturation of a single spin in minimum time

• Aim. Steer the North pole N = (0, 1) of the Bloch ball $\{|q| \le 1\}$ to the center O in minimum time.

The inversion sequence $\sigma_{-}^{N} \sigma_{s}^{v}$ is not optimal in many physical cases

Pontryagin Maximum Principle.

• Pseudo-Hamiltonian: $H(q, p, u) = p \cdot (F(q) + u G(q)) = H_F + u H_G$

• $u(\cdot)$ optimal $\Rightarrow \exists p(\cdot) \in \mathbb{R}^2 \setminus \{0\}$:

$$\dot{q} = \frac{\partial H}{\partial p}, \quad \dot{p} = -\frac{\partial H}{\partial q}$$

 $H(q(t), p(t), u(t)) = \max_{|v| \le 1} H(q(t), p(t), v) = cst \ge 0$

- Regular and bang-bang controls: $u(t) = sign(H_G(q(t), p(t))), H_G(q(t), p(t)) \neq 0$
- Singular trajectories are contained in $\{q, \det(G, [F, G])(q) = 0\}$:

$$z = \gamma/(2 \delta) = z_s(\gamma, \Gamma), \ \delta = \gamma - \Gamma$$
 and $y = 0.$

Computations:

D'(q) + u D(q) = 0with $D = \det(G, [G, [F, G]])$ and $D' = \det(G, [F, [F, G]])$. We obtain:

- $u_s = \gamma (2\Gamma \gamma)/(2\delta y)$ on the horizontal singular line.
- $u_s = 0$ on the vertical singular line

J.Rouot, B.Bonnard, O.Cots, T.Verron

- Symmetry: $u \leftarrow -u$ corresponds to $y \leftarrow -y$
- Collinearity set:
 C = {q | det(F, G)(q) = 0}
- Switching function: $\Phi(t) = p(t) \cdot G(q(t)) \text{ and outside}$ the set C, $\operatorname{sign}(\dot{\Phi}(t)) = \operatorname{sign}(\alpha(q)), \ \alpha(q) \neq 0$ where $\alpha(q(t)) = \frac{\det(G, [F, G])(q)}{\det(G, F)(q)}$.

Definition of the points S_1, S_3

The singular trajectory $q(\cdot)$ is called

- Hyperbolic if $p(t) \cdot [G, [F, G]](q(t)) = \frac{\partial}{\partial u} \frac{d^2}{dt^2} \frac{\partial H}{\partial u}(q(t), p(t)) > 0.$
- *Elliptic* if $p(t) \cdot [G, [F, G]](q(t)) = \frac{\partial}{\partial u} \frac{d^2}{dt^2} \frac{\partial H}{\partial u}(q(t), p(t)) < 0.$

J.Rouot, B.Bonnard, O.Cots, T.Verron

Optimal synthesis depends on the ratio $\frac{\gamma}{\Gamma}$.

J.Rouot, B.Bonnard, O.Cots, T.Verron

9 / 25

Case 1: S_1 exists and $S_2 \in S_1S_3$

J.Rouot, B.Bonnard, O.Cots, T.Verron

Case 2: S_1 exists and $S_2 \notin S_1S_3$

J.Rouot, B.Bonnard, O.Cots, T.Verron

Case 3: S_1 doesn't exists

J.Rouot, B.Bonnard, O.Cots, T.Verron

Theorem

The time optimal trajectory for the saturation problem of 1-spin is of the form:

$$\sigma_{+}^{N} \underbrace{\sigma_{s}^{h} \sigma_{+}^{b}}_{empty if S_{2} \leq S_{1}} \sigma_{s}^{v}$$

Numerical validations using Moments/LMI techniques

Aim: Provide lower bounds on the global optimal time.

• Numerical times obtain with the HamPath software to validate :

Case	Г	γ	t _f
<i>C</i> ₁	9.855×10^{-2}	3.65×10^{-3}	42.685
C_2	2.464×10^{-2}	3.65×10^{-3}	110.44
<i>C</i> ₃	1.642×10^{-2}	2.464×10^{-3}	164.46
<i>C</i> ₄	9.855×10^{-2}	9.855×10^{-2}	8.7445

Context

$$\begin{split} t_{f} &= \inf_{u(\cdot)} T \\ \dot{x}(t) &= f(x(t), u(t)), \\ x(t) &\in X, \quad u(t) \in U, \quad x(0) \in X_{0}, \quad x(T) \in X_{T} \\ X, U, X_{0}, X_{T} \text{ are subsets of } \mathbb{R}^{n} \text{ which can be written as} \\ X &= \{(t, x) : p_{k}(t, x) \geq 0, \ k = 0, \dots, n_{X}\}, \ U &= \{u : q_{k}(u) \geq 0, \ k = 0, \dots, n_{U}\} \\ X_{0} &= \{x : r_{k}^{0}(x) \geq 0, \ k = 0, \dots, n_{0}\}, \ X_{T} &= \{(t, x) : r_{k}^{T}(t, x)0, \ k = 0, \dots, n_{T}\} \end{split}$$

Objective: Compute $\min_{u(\cdot)} T$ when $f, p_k, q_k, r_k^0, r_k^T$ are polynomials and the above sets are compacts.

Result: [J. B. Lasserre, D. Henrion, C. Prieur, E. Trélat, 2008] Converging monotone nondecreasing sequence of lower bounds of t_f .

$$\int_0^T v(t, x(t)) \, \mathrm{d}t = \int_0^T \int_X \int_U v(t, x) \, \mathrm{d}\mu(t, x, u), \quad v \in \mathcal{C}^0([0, T] \times X)$$

Linear equation linking the measures μ_{0},μ and $\mu_{T}.$

$$\int_{X_{T}} v(T,x) \,\mathrm{d}\mu_{T}(x) - \int_{X_{0}} v(0,x) \,\mathrm{d}\mu_{0}(x) = \int_{[0,T] \times Q \times U} \frac{\partial v}{\partial t} + \nabla_{x} \cdot f(x,u) \,\mathrm{d}\mu(t,x,u)$$

for all test functions $v \in C^1([0, T] \times X)$.

Optimization over system trajectories \Leftrightarrow

Optimization over measures satisfying Liouville equation.

- Relaxed controls: u(t) is replaced for each t by a probability measure ω_t(u) supported on U.
- Relaxed problem:

$$T_R = \min_{\omega} T$$

s.t. $\dot{x}(t) = \int_{U} f(x(t), u) d\omega_t(u)$
 $x(0) \in X_0, \quad x(t) \in X, \quad x(T) \in X_T$

- Relaxed controls: u(t) is replaced for each t by a probability measure ω_t(u) supported on U.
- Relaxed problem:

$$\begin{aligned} & \mathcal{T}_R = \min_{\omega} \ T \\ & s.t. \quad \dot{x}(t) = \int_U f(x(t), u) \, \mathrm{d}\omega_t(u) \\ & \quad x(0) \in X_0, \quad x(t) \in X, \quad x(T) \in X_T \end{aligned}$$

• Linear Problem on measures: $d\mu(t, x, u) = dt d\delta_{x(t)}(x) d\omega_t(u) \in \mathcal{M}_+([0, T] \times X \times U)$ $T_{LP} = \min_{\mu,\mu_T,\mu_0} \int d\mu_T$ s.t. $\int \left(\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} f(x, u)\right) d\mu$ $= \int v(\cdot, x_T) d\mu_T - \int v(0, x_0) d\mu_0, \quad \forall v \in \mathbb{R}[t, x],$ $\mu \in \mathcal{M}_+([0, T] \times X \times U), \quad \mu_T \in \mathcal{M}_+(X_T), \quad \mu_T \in \mathcal{M}_+(X_0)$

J.Rouot, B.Bonnard, O.Cots, T.Verron

Notation: $\alpha = (\alpha_1, \ldots, \alpha_p) \in \mathbb{N}^p$, $z = (z_1, \ldots, z_p) \in \mathbb{R}^p$. We denote by z^{α} the monomial $z_1^{\alpha_1} \ldots z_p^{\alpha_p}$ and by \mathbb{N}_d^p the set $\{\alpha \in \mathbb{N}^p, |\alpha|_1 = \sum_{i=1}^p \alpha_i \leq d\}.$

Moment of order α for a measure $\nu \in \mathcal{M}_+(Z)$: $y_{\alpha}^{\nu} = \int z^{\alpha} d\nu(z)$.

Riesz linear functional: $I_{y^{\nu}} : \mathbb{R}[z] \to \mathbb{R}$ s.t. $I_{y^{\nu}}(z^{\alpha}) = y^{\nu}_{\alpha}$.

Moment Matrix: $M_d(y^{\nu})[i,j] = y_{i+j}^{\nu}, \forall i,j \in \mathbb{N}_d^p$.

Notation: $\alpha = (\alpha_1, \ldots, \alpha_p) \in \mathbb{N}^p$, $z = (z_1, \ldots, z_p) \in \mathbb{R}^p$. We denote by z^{α} the monomial $z_1^{\alpha_1} \ldots z_p^{\alpha_p}$ and by \mathbb{N}_d^p the set $\{\alpha \in \mathbb{N}^p, |\alpha|_1 = \sum_{i=1}^p \alpha_i \leq d\}.$

Moment of order α for a measure $\nu \in \mathcal{M}_+(Z)$: $y_{\alpha}^{\nu} = \int z^{\alpha} d\nu(z)$.

Riesz linear functional: $I_{y^{\nu}} : \mathbb{R}[z] \to \mathbb{R}$ s.t. $I_{y^{\nu}}(z^{\alpha}) = y_{\alpha}^{\nu}$.

Moment Matrix: $M_d(y^{\nu})[i,j] = y_{i+j}^{\nu}, \ \forall i,j \in \mathbb{N}_d^p$.

Proposition (Putinar, 1993) Let $Z = \{z \in \mathbb{R}^p \mid g_k(z) \ge 0, k = 1, ..., n_Z\}$. The sequence $(y_\alpha)_\alpha$ has a representing measure $\nu \in \mathcal{M}_+(Z)$ if and only if

$$M_d(y) \succeq 0$$
, $M_d(g_k y) \succeq 0$, $\forall d \in \mathbb{N}, \forall k = 1, Moment \dots, n_Z$.

Moment Semidefinite Programming Problem:

$$T_{SDP} = \min_{y^{\mu}, y^{\mu_{T}}} l_{y^{\mu_{T}}}(1)$$

$$l_{y^{\mu}} \left(\frac{\partial v}{\partial t} + \frac{\partial v}{\partial x} f(x, u) \right) = l_{y^{\mu_{T}}}(v(\cdot, x_{T})) - l_{y^{\mu_{0}}}(v(0, x_{0})), \forall v \in \mathbb{R}[t, x],$$

$$M_{d}(y^{\mu}) \succeq 0, \ M_{d}(g_{i}, y^{\mu}) \succeq 0, \ \forall i, \ \forall d \in \mathbb{N},$$

$$M_{d}(y^{\mu_{0}}) \succeq 0, \ M_{d}(g_{i}^{0}, y^{\mu_{T}}) \succeq 0, \ \forall i \ \forall d \in \mathbb{N}$$

$$M_{d}(y^{\mu_{T}}) \succeq 0, \ M_{d}(g_{i}^{T}, y^{\mu_{T}}) \succeq 0, \ \forall i \ \forall d \in \mathbb{N}$$

where g_i, g_i^0 and g_i^T are polynomials defining the sets $[0, T] \times X \times U, X_0$ and X_T respectively. By truncating the sequences $(y^{\mu}), (y^{\mu \tau})$ up to moments of length r (relaxation order), we have a **hierarchy of Semidefinite Programming Problems** and the lower bounds $T_{sdp}^1, \ldots, T_{sdp}^r, \ldots$ of these problems satisfy:

$$t_{f} = T_{LP} = T_{SDP} \ge \ldots \ge T_{sdp}^{r+1} \ge T_{sdp}^{r} \ge \ldots \ge T_{sdp}^{1}.$$

Numerical results on the saturation problem

Perspectives

- Generalization to an ensemble of pair of spins where Bloch equations are coupled and Inhomogeneities on the control field are taken into account.
- Contrast problem where we have two species to discriminate. Saturation of the first spin while the norm of the second spin is maximized.