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Two body problem

Coordinates (I, ϕ)

- I ∈ U(⊂ R5) : geometric elements of the ellipse,

- ϕ ∈ S1 : position on the orbit.

Equations of motion In first approximation,

İ = 0, ϕ̇ = ω(I) > 0

I is a slow variable compared to ϕ.
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Minimum time orbital transfer with low thrust

min
tf , |u|≤1

tf

s.t. İ = εF0(I, ϕ, ε) + ε
3∑
i=1

uiFi(I, ϕ, ε), I(0) = I0

ϕ̇ = ω(I) + εG0(I, ϕ, ε) + ε
3∑
i=1

uiGi(I, ϕ, ε), I(tf) = If .

0 < ε� 1, and I0, If are given. ϕ(0) and ϕ(tf) are free.
Fi(·, ϕ, ·), Gi(·, ϕ, ·) i = 0 . . . 3 are 2π-periodic w.r.t. ϕ, u ∈ R3.

F0, G0 modeled perturbations

– high order terms in the gravitational
potential of the Earth,

– luni-solar perturbation, ...

Orbital Transfer

I0

If 3



Averaging principle for dynamical systems

Let f (X,ψ, ε), g(X,ψ, ε) be two vector fields 2π-periodic w.r.t. ψ ∈ S1.

Unperturbed system Ẋ = 0, ψ̇ = ω(X)

Perturbed system

Ẋ = εf (X,ψ, ε), ψ̇ = ω(X) + εg(X,ψ, ε)

where X ∈ C ⊂ Rn.There are C ′ ⊂ C and τ > 0 s.t.

Y ′ = f (Y ), f (X) =
1

2π

∫ 2π

0

f (X,ψ, ε = 0) dψ,

have a well-defined solution defined on [0, τ ] for every initial condition Y (0) ∈ C ′.
Theorem 1. ∃ε0 > 0, 0 < ε < ε0 and for every initial condition in C ′ × S1, the
perturbed system has a solution on [0, τ/ε] s.t.

|X(t)− Y (εt)| = O(ε)
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Non average extremal system

PMP: a minimizing trajectory is projection of an extremal (I(.), ϕ(.), pI(.), pϕ(.))
solution of the Hamiltonian system

H(I, ϕ, pI, pϕ, ε) = pϕω(I) + εK0(I, ϕ, pI, pϕ, ε),

K0 := H0+

√√√√ 3∑
i=1

H2
i , Hi(I, ϕ, pI, pϕ, ε) = pIFi(I, ϕ, ε)+pϕGi(I, ϕ, ε), i = 0, ..., 3.

Extremal system

İ = ε
∂K0

∂pI
, ṗI = −pϕω′ − ε

∂K0

∂I

ϕ̇ = ω + ε
∂K0

∂pϕ
, ṗϕ = −ε∂K0

∂ϕ

Theorem 2. Normalizing on H = ε (normal extremals), we have

pϕ = −εh(I, ϕ, pI, ε)
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Average boundary value problem

0 =
∂

∂pI

(
H(I, ϕ, pI,−εh(I, ϕ, pI, ε), ε)− ε

)
= ε

∂K0

∂pI
− ε ∂h

∂pI

∂H

∂pϕ

⇒ İ = ε
∂h

∂pI
ϕ̇, and similarly, we have: ṗI = −ε∂h

∂I
ϕ̇.

⇒ Reparametrization w.r.t.: s = ε(ϕ− ϕ0).

Definition 3. The average boundary value problem is

dI

ds
=
∂h

∂pI
,

dpI
ds

= −∂h
∂I

I(0) = I0, I(sf) = If , h = 0

where

h(I, pI) :=
1

2π

∫ 2π

0

h(I, ϕ, pI, ε=0)dϕ =
1

2π

∫ 2π

0

K0 − 1

ω
(I, ϕ, pI, pϕ=0, ε=0)dϕ.
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Average shooting function

Let
S(sf , p0) = (I(sf , p0)− If , h(I0, p0))

be the shooting function associated with the average dynamic

dz

ds
=
−→
h (z(s)), z = (I, pI)

Remark 4. h is smooth outside Σ where

Σ = {(I, pI, ϕ) ∈ T ∗M × S1 | pI · Fi(I, ϕ, pI, ε) = 0, i = 1, 2, 3}

in
Σ = Π(Σ), Π : T ∗M × S1 → T ∗M.
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Non average shooting function

For ε > 0, consider

Sε(sf , p0) = (I(sf , p0)− If , h(I0, p0))

be the shooting function associated with the non-average dynamic

dz

ds
=
−→
h (s/ε, z(s), ε), z = (I, pI).

Remark 5. Note that solutions of Sε(sf , p0) = 0 doesn’t define strict extremals in
the sense that the true conditions

h(ϕ0, z0, ε) = h(ϕf , zf , ε) = 0

are replace by
h(z0) = 0.

They are called ”quasi-extremals”.
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Convergence theorems

Theorem 6. Let (Iε(.))ε be a family of non average trajectories (with ”quasi-
extremals” lifts) converging as ε→ 0 with fixed extremities I0, If . Then the limit is
solution of the average boundary value problem.

Theorem 7. Let I(.) be a trajectory of the average system which doesn’t have
conjugate points.
Then, there exists a family of non average trajectories (Iε(.))ε converging to I(.) as
ε→ 0 satisfying the boundary values: Iε(0) = I0 and Iε(tf) = If +O(ε) and under
further assumptions, there exists (ϕ0, p0) s.t.

h(ϕ0, z(0), ε) = 0 and h(sf/ε + ϕ0, z(sf), ε) = 0.

Remark 8. Numerical use: The solution of the average system can be used to
initialize the shooting function of the non average system.
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Lemma 9. Let f : Rn → Rn be a continuously differentiable function with a regular
zero at x = 0 , and let fε : Rn → Rn, ε > 0 , be continuous functions converging
uniformly towards f on a neighborhood of the origin when ε→ 0.
There exists ε0 > 0 and x : [0, ε0]→ Rn continuous at ε = 0, s.t. x(0) = 0 and

fε(x(ε)) = 0, ε ∈ (0, ε0].

Proof of the convergence Theorem 7. Let (sf , p0) the solution of the average
system (S(sf , p0) = 0).

1. Apply Lemma 9 with f = S and fε = Sε. Then there exists p0(ε) → p0 s.t.
h(I0, p0(ε)) = 0.
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2. Assume

∃ϕ0 ∈ S1, h(ϕ0, z0, ε = 0) = 0,
∂h

∂ϕ
(ϕ0, z0, ε = 0) 6= 0, (z0 = (I0, p0)),

we construct ϕ0(p, ε) and we apply again Lemma 9 with Sε(ϕ0, sf , p0) associated
to

dz

ds
=
−→
h (s/ε+ϕ0, z(s), ε)

to satisfy the condition h(ϕ0, z(0), ε) = 0 for the non average extremals.

3. Assume

∃ϕf ∈ S1, h(ϕf , zf , ε = 0) = 0,
∂h

∂ϕ
(ϕf , zf , ε = 0) 6= 0, (zf = z(sf , p0)),

we construct ϕf(ε) (Brouwer fix point theorem) and consider

s̃f(ε) = sf(ε) +εϕf(ε),

so that
h(s̃f/ε + ϕ0, z(s̃f), ε) = 0 and I(s̃f) = If +O(ε).
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Trajectories in Cartesian coordinates
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(red) Some average orbits of the average system.
(blue) Non average trajectory in Cartesian coordinates. 12



Metric aspect

Finsler norm F : TM → R smooth on TM\0 s.t.

• F(x, λv) = λF(x, v), λ > 0

• ∂2F 2(x, v)/∂v2 > 0

Finsler co-norm F ∗ : T ∗M → R smooth on T ∗M\0 s.t.

• F ∗(x, λp) = λF ∗(x, p), λ > 0,

• ∂2(F ∗)2(x, p)/∂p2 > 0

Theorem 10. If rang {∂jFi(I, ϕ, ε = 0)/∂ϕj, i = 1, . . . , 3, j ≥ 0} = 6,
then K0 defined a symmetric Finsler co-norm.

0

TIM
F0(I, İ) ≤ 1

İ

0

TIM

F(I, İ) ≤ 1

İ

F0 Symmetric Finsler norm F Non-symmetric Finsler norm 13



J2 Perturbation: analyze of the average metric.

Earth oblateness perturbation

H = pϕω(I) + εJ2 H0(I, pI, ϕ) + εthK0(I, pI, ϕ, pϕ, ε)

= pϕω(I) + ε
[
λH0(I, pI, ϕ) + (1− λ)K0(I, pI, ϕ, pϕ, ε)︸ ︷︷ ︸

]
= pϕω(I) + ε Kλ(I, pI, ϕ, pϕ, ε)

where ε = εJ2 + εth, λ = εJ2/ε.

We denote by K
λ

the average of Kλ w.r.t. ϕ.
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• Q : Is (I, pI) 7→ K
λ
(I, pI) = λH0(I, pi) + (1− λ)K0(I, pI) a Finsler co-norm ?

Lemma 11. For I ∈M fixed, consider the (unique) one-form F
?,λ

0 (I) solution of

F0
?,λ

(I) = argmin
p∈Rn

[
1/2 (1− λ)2K0(I, p)2 − λ〈p, F 0(I)〉

]
.

Proposition 12. Let I ∈M fixed and λc s.t. K
λc
0 (I, F0

λc ?
(I)) = 1. For all λ < λc,

T ?
IM 3 p 7→ K

λ
(I, p) ∈ R+

is a Finsler co-norm (non-symmetric).

Proposition 13. λc can be computed as

λc(I) =
1

K0(I, p?) + 1
,

where p? = 〈π?, F 0(I)〉 π?, π? = argmax
π|K0(I,π)=1

〈π, F 0(I)〉
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Numerical simulations

Let If be a fixed extremity.
We construct I0 by integrating the un-
controlled flow on [0, τd].

If
I0

Uncontrolled dynamic during τd

Boundary value problems

Average BVP Non average BVP

Extremal system K
λ

H/ε = Kλ + pϕω(I, ϕ)/ε
Free parameters λ, τd λ, τd, ε
Boundary values I(0) = I0, I(τf) = If I(0) = I0, I(tf) = If

K
λ

= 1 pϕ(0) = 0, pϕ(tf) = 0, H = ε

Settings We take ε small and analyze the dependance on λ when τd → 0 for both
systems.
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Value function for the average system
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Value function for the non average system
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Conclusion

• relate the metric property to controllabilty property

• continuity of the value function at the critical value λc.

• averaging with several angles (and other perturbations): resonances
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