Averaging for minimum time control problems and applications

18th French - German - Italian Conference on Optimization

Paderborn, September 25 - 28, 2017

Jérémy Rouot

Joint work with J.-B. Caillau and J.-B. Pomet from INRIA Sophia Antipolis, France.

Coordinates (I, φ)

- $I \in U(\subset \mathbb{R}^5)$: geometric elements of the ellipse,
- $\varphi \in S^1$: position on the orbit.

Equations of motion In first approximation,

$$\dot{I} = 0, \quad \dot{\varphi} = \omega(I) > 0$$

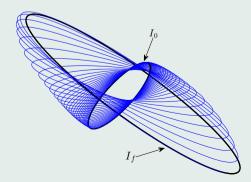
I is a slow variable compared to φ .

$$\begin{split} \min_{\substack{t_f, |\boldsymbol{u}| \leq 1}} & \boldsymbol{t}_f \\ \text{s.t.} & \dot{I} = \varepsilon F_0(I, \varphi, \varepsilon) + \varepsilon \sum_{i=1}^3 \boldsymbol{u}_i F_i(I, \varphi, \varepsilon), \qquad I(0) = \boldsymbol{I}_0 \\ & \dot{\varphi} = \omega(I) + \varepsilon G_0(I, \varphi, \varepsilon) + \varepsilon \sum_{i=1}^3 \boldsymbol{u}_i G_i(I, \varphi, \varepsilon), \quad I(\boldsymbol{t}_f) = \boldsymbol{I}_f. \end{split}$$

 $0 < \varepsilon \ll 1$, and I_0, I_f are given. $\varphi(0)$ and $\varphi(t_f)$ are free. $F_i(\cdot, \varphi, \cdot), G_i(\cdot, \varphi, \cdot)$ $i = 0 \dots 3$ are 2π -periodic w.r.t. φ , $u \in \mathbb{R}^3$.

 F_0, G_0 modeled perturbations

- high order terms in the gravitational potential of the Earth,
- luni-solar perturbation, ...



AVERAGING PRINCIPLE FOR DYNAMICAL SYSTEMS

Let $f(X, \psi, \varepsilon), g(X, \psi, \varepsilon)$ be two vector fields 2π -periodic w.r.t. $\psi \in S^1$. Unperturbed system $\dot{X} = 0$, $\dot{\psi} = \omega(X)$

Perturbed system

 $\dot{X} = \varepsilon f(X, \psi, \varepsilon), \quad \dot{\psi} = \omega(X) + \varepsilon g(X, \psi, \varepsilon)$

where $X \in C \subset \mathbb{R}^n$. There are $C' \subset C$ and $\tau > 0$ s.t.

$$Y' = \overline{f}(Y), \quad \overline{f}(X) = \frac{1}{2\pi} \int_0^{2\pi} f(X, \psi, \varepsilon = 0) \,\mathrm{d}\psi,$$

have a well-defined solution defined on $[0, \tau]$ for every initial condition $Y(0) \in C'$.

Theorem 1. $\exists \varepsilon_0 > 0, \ 0 < \varepsilon < \varepsilon_0$ and for every initial condition in $C' \times S^1$, the perturbed system has a solution on $[0, \tau/\varepsilon]$ s.t.

$$|X(t) - Y(\varepsilon t)| = O(\varepsilon)$$

NON AVERAGE EXTREMAL SYSTEM

PMP: a minimizing trajectory is projection of an extremal $(I(.), \varphi(.), p_I(.), p_{\varphi}(.))$ solution of the Hamiltonian system

$$H(I,\varphi,p_I,p_{\varphi},\varepsilon) = p_{\varphi}\omega(I) + \varepsilon K_0(I,\varphi,p_I,p_{\varphi},\varepsilon),$$

$$K_0 := H_0 + \sqrt{\sum_{i=1}^3 H_i^2}, \ H_i(I,\varphi,p_I,p_\varphi,\varepsilon) = p_I F_i(I,\varphi,\varepsilon) + p_\varphi G_i(I,\varphi,\varepsilon), \ i = 0,...,3.$$

Extremal system

$$\dot{I} = \varepsilon \frac{\partial K_0}{\partial p_I}, \quad \dot{p}_I = -p_{\varphi}\omega' - \varepsilon \frac{\partial K_0}{\partial I}$$

 $\dot{\varphi} = \omega + \varepsilon \frac{\partial K_0}{\partial p_{\varphi}}, \quad \dot{p}_{\varphi} = -\varepsilon \frac{\partial K_0}{\partial \varphi}$

Theorem 2. Normalizing on $H = \varepsilon$ (normal extremals), we have

 $p_{\varphi} = -\varepsilon h(I, \varphi, p_I, \varepsilon)$

$$0 = \frac{\partial}{\partial p_I} \left(H(I,\varphi, p_I, -\varepsilon h(I,\varphi, p_I,\varepsilon), \varepsilon) - \varepsilon \right) = \varepsilon \frac{\partial K_0}{\partial p_I} - \varepsilon \frac{\partial h}{\partial p_I} \frac{\partial H}{\partial p_{\varphi}}$$

$$\Rightarrow \dot{I} = \varepsilon \frac{\partial h}{\partial p_I} \dot{\varphi}, \text{ and similarly, we have: } \dot{p}_I = -\varepsilon \frac{\partial h}{\partial I} \dot{\varphi}.$$

$$\Rightarrow \text{ Reparametrization w.r.t.: } s = \varepsilon (\varphi - \varphi_0).$$

Definition 3. The average boundary value problem is

$$\frac{\mathrm{d}\overline{I}}{\mathrm{d}s} = \frac{\partial\overline{h}}{\partial p_I}, \quad \frac{\mathrm{d}\overline{p}_I}{\mathrm{d}s} = -\frac{\partial\overline{h}}{\partial I}$$
$$\overline{I}(0) = I_0, \quad \overline{I}(\overline{s}_f) = I_f, \quad \overline{h} = 0$$

where

$$\overline{h}(I,p_I) \coloneqq \frac{1}{2\pi} \int_0^{2\pi} h(I,\varphi,p_I,\varepsilon=0) \mathrm{d}\varphi = \frac{1}{2\pi} \int_0^{2\pi} \frac{K_0 - 1}{\omega} (I,\varphi,p_I,p_{\varphi}=0,\varepsilon=0) \mathrm{d}\varphi.$$

6

AVERAGE SHOOTING FUNCTION

Let

$$\overline{S}(s_f, p_0) = (\overline{I}(s_f, p_0) - I_f, \overline{h}(I_0, p_0))$$

be the shooting function associated with the average dynamic

$$\frac{\mathrm{d}\overline{z}}{\mathrm{d}s} = \overrightarrow{\overline{h}}(\overline{z}(s)), \quad \overline{z} = (\overline{I}, \overline{p}_I)$$

Remark 4. \overline{h} is smooth outside $\overline{\Sigma}$ where

 $\Sigma = \{ (I, p_I, \varphi) \in T^*M \times S^1 \mid p_I \cdot F_i(I, \varphi, p_I, \varepsilon) = 0, \ i = 1, 2, 3 \}$

in

$$\overline{\Sigma} = \Pi(\Sigma), \quad \Pi: T^*M \times S^1 \to T^*M.$$

For $\varepsilon>0,$ consider

$$S_{\varepsilon}(s_f, p_0) = (I(s_f, p_0) - I_f, \overline{h}(I_0, p_0))$$

be the shooting function associated with the non-average dynamic

$$\frac{\mathrm{d}z}{\mathrm{d}s} = \overrightarrow{h}(s/\varepsilon, z(s), \varepsilon), \quad z = (I, p_I).$$

Remark 5. Note that solutions of $S_{\varepsilon}(s_f, p_0) = 0$ doesn't define strict extremals in the sense that the true conditions

$$h(\varphi_0, z_0, \varepsilon) = h(\varphi_f, z_f, \varepsilon) = 0$$

are replace by

 $\overline{h}(z_0) = 0.$

They are called "quasi-extremals".

Theorem 6. Let $(I^{\varepsilon}(.))_{\varepsilon}$ be a family of non average trajectories (with "quasiextremals" lifts) converging as $\varepsilon \to 0$ with fixed extremities I_0, I_f . Then the limit is solution of the average boundary value problem.

Theorem 7. Let $\overline{I}(.)$ be a trajectory of the average system which doesn't have conjugate points.

Then, there exists a family of non average trajectories $(I^{\varepsilon}(.))_{\varepsilon}$ converging to $\overline{I}(.)$ as $\varepsilon \to 0$ satisfying the boundary values: $I^{\varepsilon}(0) = I_0$ and $I^{\varepsilon}(t_f) = I_f + O(\varepsilon)$ and under further assumptions, there exists (φ_0, p_0) s.t.

$$h(\varphi_0, z(0), \varepsilon) = 0$$
 and $h(s_f/\varepsilon + \varphi_0, z(s_f), \varepsilon) = 0.$

Remark 8. Numerical use: The solution of the average system can be used to initialize the shooting function of the non average system.

Lemma 9. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a continuously differentiable function with a regular zero at x = 0, and let $f_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}^n$, $\varepsilon > 0$, be continuous functions converging uniformly towards f on a neighborhood of the origin when $\varepsilon \to 0$. There exists $\varepsilon_0 > 0$ and $x : [0, \varepsilon_0] \to \mathbb{R}^n$ continuous at $\varepsilon = 0$, s.t. x(0) = 0 and

 $f_{\varepsilon}(x(\varepsilon)) = 0, \qquad \varepsilon \in (0, \varepsilon_0].$

Proof of the convergence Theorem 7. Let $(\overline{s}_f, \overline{p}_0)$ the solution of the average system $(\overline{S}(\overline{s}_f, \overline{p}_0) = 0)$.

1. Apply Lemma 9 with $f = \overline{S}$ and $f_{\varepsilon} = S_{\varepsilon}$. Then there exists $p_0(\varepsilon) \to \overline{p}_0$ s.t. $\overline{h}(I_0, p_0(\varepsilon)) = 0$.

2. Assume

$$\exists \overline{\varphi}_0 \in S^1, \quad h(\overline{\varphi}_0, \overline{z}_0, \varepsilon = 0) = 0, \quad \frac{\partial h}{\partial \varphi}(\overline{\varphi}_0, \overline{z}_0, \varepsilon = 0) \neq 0, \quad (\overline{z}_0 = (I_0, \overline{p}_0)),$$

we construct $\varphi_0(p,\varepsilon)$ and we apply again Lemma 9 with $S_{\varepsilon}(\varphi_0,s_f,p_0)$ associated to

$$\frac{\mathrm{d}z}{\mathrm{d}s} = \overrightarrow{h}\left(s/\varepsilon + \varphi_{\mathbf{0}}, z(s), \varepsilon\right)$$

to satisfy the condition $h(arphi_0,z(0),arepsilon)=0$ for the non average extremals.

3. Assume

$$\exists \overline{\varphi}_f \in S^1, \quad h(\overline{\varphi}_f, \overline{z}_f, \varepsilon = 0) = 0, \quad \frac{\partial h}{\partial \varphi}(\overline{\varphi}_f, \overline{z}_f, \varepsilon = 0) \neq 0, \quad (\overline{z}_f = \overline{z}(\overline{s}_f, p_0)),$$

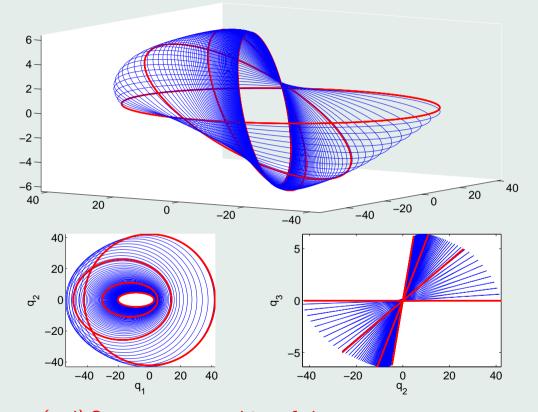
we construct $\varphi_f(\varepsilon)$ (Brouwer fix point theorem) and consider

$$\widetilde{s}_f(\varepsilon) = s_f(\varepsilon) + \varepsilon \varphi_f(\varepsilon),$$

so that

$$h(\widetilde{s}_f/\varepsilon + \varphi_0, z(\widetilde{s}_f), \varepsilon) = 0 \text{ and } I(\widetilde{s}_f) = I_f + O(\varepsilon).$$

TRAJECTORIES IN CARTESIAN COORDINATES



(red) Some average orbits of the average system. *(blue)* Non average trajectory in Cartesian coordinates.

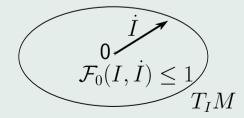
Finsler norm $\mathcal{F}: TM \to \mathbf{R}$ smooth on $TM \setminus 0$ s.t.

- $\mathcal{F}(x,\lambda v) = \lambda \mathcal{F}(x,v)$, $\lambda > 0$
- $\bullet \; \partial^2 \mathcal{F}^2(x,v)/\partial v^2 > 0$

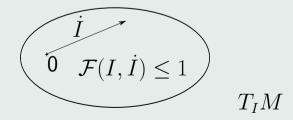
Finsler co-norm $F^*: T^*M \to \mathbf{R}$ smooth on $T^*M \setminus 0$ s.t.

- $F^*(x,\lambda p) = \lambda F^*(x,p), \ \lambda > 0$,
- $\bullet \; \partial^2(F^*)^2(x,p)/\partial p^2 > 0$

Theorem 10. If rang $\{\partial^j F_i(I, \varphi, \varepsilon = 0) / \partial \varphi^j, i = 1, ..., 3, j \ge 0\} = 6$, then \overline{K}_0 defined a symmetric Finsler co-norm.



 \mathcal{F}_0 Symmetric Finsler norm



 ${\mathcal F}$ Non-symmetric Finsler norm

Earth oblateness perturbation

$$H = p_{\varphi}\omega(I) + \varepsilon_{J_{2}} \frac{H_{0}(I, p_{I}, \varphi) + \varepsilon_{th} K_{0}(I, p_{I}, \varphi, p_{\varphi}, \varepsilon)}{= p_{\varphi}\omega(I) + \varepsilon} \left[\underbrace{\lambda H_{0}(I, p_{I}, \varphi) + (1 - \lambda) K_{0}(I, p_{I}, \varphi, p_{\varphi}, \varepsilon)}_{K^{\lambda}(I, p_{I}, \varphi, p_{\varphi}, \varepsilon)} \right]$$

where $\varepsilon = \varepsilon_{J2} + \varepsilon_{th}$, $\lambda = \varepsilon_{J2}/\varepsilon$.

We denote by \overline{K}^{λ} the average of K^{λ} w.r.t. φ .

• Q: Is $(I, p_I) \mapsto \overline{K}^{\lambda}(I, p_I) = \lambda \overline{H}_0(I, p_i) + (1 - \lambda) \overline{K}_0(I, p_I)$ a Finsler co-norm ? Lemma 11. For $I \in M$ fixed, consider the (unique) one-form $\overline{F}_0^{\star,\lambda}(I)$ solution of

$$\overline{F_0}^{\star,\lambda}(I) = \underset{p \in \mathbb{R}^n}{\operatorname{argmin}} \left[1/2 \, (1-\lambda)^2 \overline{K}_0(I,p)^2 - \lambda \langle p, \overline{F}_0(I) \rangle \right].$$

Proposition 12. Let $I \in M$ fixed and λ_c s.t. $\overline{K}_0^{\lambda_c}(I, \overline{F_0}^{\lambda_c \star}(I)) = 1$. For all $\lambda < \lambda_c$, $T_I^{\star}M \ni p \mapsto \overline{K}^{\lambda}(I, p) \in \mathbb{R}^+$

is a Finsler co-norm (non-symmetric).

Proposition 13. λ_c can be computed as

$$\lambda_c(I) = \frac{1}{\overline{K}_0(I, p^\star) + 1},$$

where $p^{\star} = \langle \pi^{\star}, \overline{F}_0(I) \rangle \pi^{\star}, \ \pi^{\star} = \operatorname*{argmax}_{\pi \mid \overline{K}_0(I,\pi) = 1} \langle \pi, \overline{F}_0(I) \rangle$

Let I_f be a fixed extremity. We construct I_0 by integrating the uncontrolled flow on $[0, \tau_d]$.

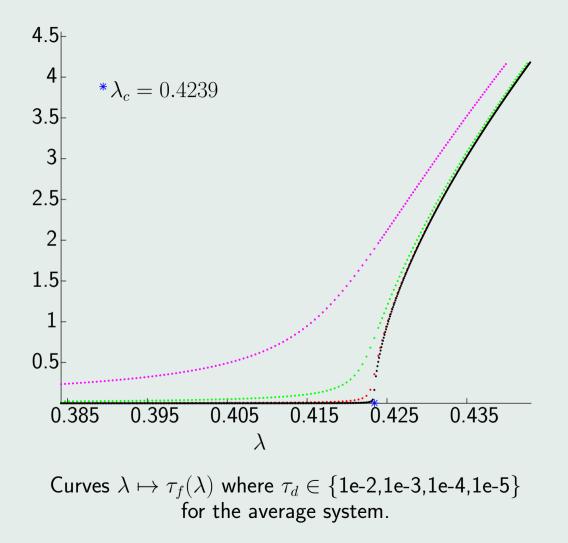
Uncontrolled dynamic during au_d

Boundary value problems

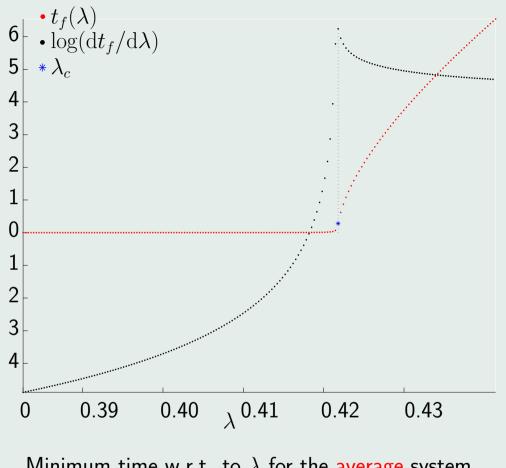
 $\begin{array}{ll} \mbox{Average BVP} & \mbox{Average BVP} \\ \mbox{Extremal system} & \overline{K}^{\lambda} & \\ \mbox{Free parameters} & \lambda, \ \tau_d & \\ \mbox{Boundary values} & I(0) = I_0, I(\tau_f) = I_f & \\ \hline \overline{K}^{\lambda} = 1 & \\ \end{array} \begin{array}{ll} \mbox{Non average BVP} & \\ \mbox{H/} \varepsilon = K^{\lambda} + p_{\varphi} \omega(I,\varphi)/\varepsilon & \\ \mbox{\lambda, } \ \tau_d, \ \varepsilon & \\ I(0) = I_0, I(t_f) = I_f & \\ p_{\varphi}(0) = 0, p_{\varphi}(t_f) = 0, H = \varepsilon & \\ \end{array}$

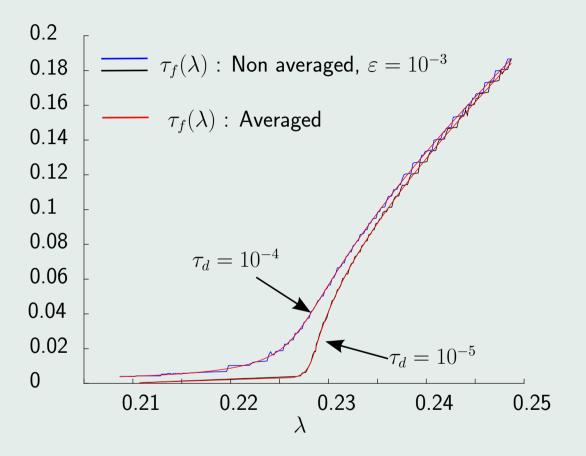
Settings We take ε small and analyze the dependence on λ when $\tau_d \to 0$ for both systems.

VALUE FUNCTION FOR THE AVERAGE SYSTEM



17





Curves $\lambda \to \tau_f$ for the average and non average system where $\varepsilon = 10^{-3}$ et $\tau_d \in \{1e-4, 1e-5\}$.

- relate the metric property to controllability property
- continuity of the value function at the critical value λ_c .
- averaging with several angles (and other perturbations): resonances