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TWO BODY PROBLEM

Coordinates (7, )
-1 € U(C R®) : geometric elements of the ellipse,
- ¢ € S : position on the orbit.

Equations of motion In first approximation,

[=0, ¢o=wl)>0

I is a slow variable compared to .



MINIMUM TIME ORBITAL TRANSFER WITH LOW THRUST

min tf

3
s.t. I =cFy(I,p,€)+ EZuiFi(I, ©,€), 1(0) = I
=1

3
C)'O ZW(I) +€GO([79075> +5ZU2‘G¢(I,@,5), I(tf) - If'
i=1

0 <e <1, and [y, I; are given. (0) and ¢(t;) are free.
Fi(-,0,%),Gi(-,¢,-) 1 =0...3 are 2m-periodic w.r.t. ©, u € R

Fy, Gy modeled perturbations

— high order terms in the gravitational
potential of the Earth,

— luni-solar perturbation, ...




AVERAGING PRINCIPLE FOR DYNAMICAL SYSTEMS

Let f(X,4,¢),g9(X,1,e) be two vector fields 27r-periodic w.r.t. ¢ € S*.

Unperturbed system X =0, o =w(X)

Perturbed system

X =cf(X,¢,e), ¥ =uw(X)+eg(X,¢,e)
where X € C C R Thereare C' C C' and 7 > 0 s.t.
/ L . 1 2m
Y =FY), FX) =5 | fXwe=0)dy,

have a well-defined solution defined on [0, 7] for every initial condition Y (0) € C".

Theorem 1. 3z, > 0, 0 < € < gy and for every initial condition in C' x S*, the
perturbed system has a solution on |0, 7 /€] s.t.

| X(t) = Y(et)| = Ole)



NON AVERAGE EXTREMAL SYSTEM

PMP: a minimizing trajectory is projection of an extremal (I(.),(.),pr(.),p,(.))
solution of the Hamiltonian system

H(I7 Spaplapgoa 8) — pcpw(]) + <C:[(0<17 §07p17p907 8)7

3
KO = H0+ ZHfa HZ(I7 Spapbpgmg) - plE<[7 9075)+p<ﬂGi([7 9075>7 1= 07 T 3.
=1

Extremal system

PO O

0p17 v 8[
- 0K, . 0K,
Sp_w+€3p¢’ pw——sw

Theorem 2. Normalizing on H = € (normal extremals), we have

pcp — _Eh'<]7 ¥, Pr1, 5)



AVERAGE BOUNDARY VALUE PROBLEM

0 0K, oh OH
0=—VH,p,pr,—ch(l,po,pr,e)e)—c| =6—— —e——
apl ( < ¥, D1 ( ¥, Pr ) ) ) apl apl app
: oh oh
= 1 = 83—]91 ©, and similarly, we have: p; = —65 ©.

= Reparametrization w.r.t.: s =¢e(p — ¢y).

Definition 3. The average boundary value problem is
ds  Op;’ ds  OI

10)=1I, IG)=1I;, h=0

. 1 27 1 2T K()—l

h(I7pI> ::% 0 h(17907p17520)d90:% 0 W

<[7 QO,pI,pSOZO,&“:O)dSO.
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AVERAGE SHOOTING FUNCTION

Let

S<Sf7p0> — (I(Sf7p0> _ Ifa h(107p0>)
be the shooting function associated with the average dynamic

Z_We), z=05)

Remark 4. h is smooth outside Y where
Y={(,pr,0) € T*M x S" | p;- F,(I,,pr,€) =0, i =1,2,3}

n

S=I(), II:T°M xS" — T*M.



NON AVERAGE SHOOTING FUNCTION

For ¢ > 0, consider

S€(5f7p0) = (I(Sfap()) — Iy, h(-[())p()))

be the shooting function associated with the non-average dynamic

=
Remark 5. Note that solutions of S.(s;,py) = 0 doesn't define strict extremals in
the sense that the true conditions

& T (s/e 2(s).e). 2= (L.py).

h(po, 20,€) = h(py, 25,€) =0

are replace by

h(z) = 0.

They are called "quasi-extremals”.



CONVERGENCE THEOREMS

Theorem 6. Let (I°(.)). be a family of non average trajectories (with "quasi-
extremals” lifts) converging as € — 0 with fixed extremities Iy, I;. Then the limit is
solution of the average boundary value problem.

Theorem 7. Let I(.) be a trajectory of the average system which doesn’t have
conjugate points.

Then, there exists a family of non average trajectories (I5(.)). converging to I(.) as
e — 0 satisfying the boundary values: 1°(0) = I, and I°(t;) = I; +O(=) and under
further assumptions, there exists (g, poy) S-t.

h(vo,2(0),e) =0 and h(sp/e + o, 2(sy),€) = 0.

Remark 8. Numerical use: The solution of the average system can be used to
initialize the shooting function of the non average system.



Lemma 9. Let f : R" — R" be a continuously differentiable function with a regular

zeroatx =0, and let f. : R" — R", € > 0, be continuous functions converging
uniformly towards f on a neighborhood of the origin when ¢ — 0.

There exists ey > 0 and x : [0, gg] — R" continuous at € =0, s.t. x(0) =0 and

fo(x(e)) =0, e € (0, ).

f 7. Let (57,Dp,) the solution of the average
system (5(Sy,Py) = 0).

1. Apply Lemma 9 with f = S and f. = S.. Then there exists py(e) — P, s.t.
h(1o, po(€)) = 0.
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2. Assume

Oh

3@0 € Sl? h(@mEO)E — O) — 07 %(@07207 &€ = O) 7£ 07 (50 — (107]_90))7

we construct og(p, €) and we apply again Lemma 9 with S.(, s, pg) associated
to

dz —

— = h(s/e ,2(8), €

L _ R(sfe t0,2(9), 0
to satisfy the condition h(¢g, 2(0),&) = O for the non average extremals.

3. Assume

_ _ oh ,_ _ _
EISOfESl) h(gpf,zf,&‘:()):(), %(prvzfﬂszo)?éov (Zf:Z(Sf7p0))v

we construct ¢(¢) (Brouwer fix point theorem) and consider

5(e) = s4(e) :

so that
h(sy/e + o, 2(S¢),€) = 0 and I(sy) = I
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TRAJECTORIES IN CARTESIAN COORDINATES

" ““—
\iii\\‘\‘\‘\\{{{i\‘\\‘“—r
\ NN NN
AR

(red) Some average orbits of the average system.
(blue) Non average trajectory in Cartesian coordinates. 12



F :TM — R smooth on TM\O s.t.
o F(x,\v) =AF(z,v), A >0
e 0°F*(x,v)/0v* >0

F*: T*M — R smooth on T*M\0 s.t.
o [(x,\p) = AF*(x,p), A >0,
o O*(F*)*(x,p)/0p* >0

Theorem 10. /frang {0'Fi(I,0,e =0)/0¢’, i=1,...,3, j >0} =6,
then K defined a symmetric Finsler co-norm.

TI M T] M

Fo Symmetric Finsler norm F Non-symmetric Finsler norm
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H = pﬁﬂ([) + € J, H()(]ypla 90> + Eth K0(17p17 Spapgm 6)
= pdﬂ([) + € |:\>\H0<],p], QO) + (1 — >\) K0(17p17 Y5 Py 6)1:|

~"

— pow(I) +¢ K (I, p1,,Dp,€)

where e = g5+ &4, A = ep/e.

We denote by K the average of K w.r.t. .
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e Q:Is(I,pr)+— FA([,pI) = MHy(I,p;) + (1 — \)K(I, p;) a Finsler co-norm ?

Lemma 11. For [ € M fixed, consider the (unique) one-form FQ’A(I ) solution of

Fy"(I) = argmin |1/2(1 = \Ko(I,p)* = Xp, Fo(D)|

peR”

Proposition 12. Let I € M fixed and \, s.t. K, (I, Fy (1)) = 1. Forall A < A,
TiM > p— F/\([,p) e R"

is a Finsler co-norm (non-symmetric).

Proposition 13. )\, can be computed as

1
A]) == :
Ko(l,p*> + 1
where p* = (%, Fo(I)) m*, m* = argmax (m, Fo(I))
7| Ko(I,m)=1
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Let I; be a fixed extremity. Uncontrolled dynamic during 7,
We construct [ by integrating the un-

controlled flow on [0, 7). I
Ly

Average BVP Non average BVP
Extremal system K H/e = K*+ p,w(l,)/e
Free parameters )\, 7, A, Ty, €
Boundary values [(0) = Iy, I(1;) = 1;| 1(0) = Iy, I(t;) = I;

—

K =1 p,(0) =0,p,(t;) =0,H =¢

We take € small and analyze the dependance on A when 7; — 0 for both
systems.
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Curves A — 7¢(\) where 7, € {le-2,1e-3,1e-4,1e-5}
for the average system.
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“tr(A)
-« log(dt,/dN)
L ¥ >\C R .t ..............

0 0.39 0.40 A\ 0.41 0.42 0.43

Minimum time w.r.t. to A for the average system
and its derivative w.r.t. .
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Curves A — 74 for the average and non average system

where ¢ = 107° et 7; € {le-4,1e-5}.
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e relate the metric property to controllabilty property
e continuity of the value function at the critical value \..

e averaging with several angles (and other perturbations): resonances
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